

Northumbria University Faculty of Engineering and Environment PhD –Department of Architecture and Built Environment

IDRiM Virtual Workshop

Living-Transforming Post-disaster Accommodation: Towards a Long-term Housing Conceptual Approach that Extends Beyond Sustainability

Presented by: Sara Ghanbarzadeh Ghomi

Supervisors:

Principal Supervisor: Kanchana Ginige (Northumbria University) Second Supervisor: Onaopepo Adeniyi (Northumbria University) External Supervisor: Gayan Wedawatta (Aston University)

Project start date: 1/10/2019

LTFDR-SHELTER (Interdisciplinary approach)

The main aim of this research is to investigate the application of 'Living-Transforming Post-Disaster shelter' conceptual approach as a way of providing post-disaster housing effectively

Objectives:

- Analyze the existing approaches for post-disaster housing and clarify the proposed 'Transforming Post-Disaster shelter' conceptual approach
- Review the potential opportunities and challenges of new Engineered Living Materials (ELM) to explore their effective applicability in the built environment.
- Evaluate the applicability of new engineered living materials (ELM) in 'Transforming DR-shelter' conceptual approach
- Determine the concept of 'Living-Transforming DR-shelter' approach
- Develop the 'Living-Transforming DR-shelter' framework of critical success factor (CSFs), challenges and opportunities

Proactive approach Making with life Values Needs Ethics Risks

(Fengler, Ihsan, & Kaiser, 2008)

LTFDR-SHELTER- Comparison to existing approaches

3-phased approach

Transitional Add value to next phase

Living-Transforming Transform value to better quality for next phase

POST-DISATER SHELTER PROVISION AND RECONSTRUCTION APPROACHES

Living-Transforming DR Shelter Approach 📕 🛃 👘 🖌 🕪 🖉 🖬 🖉 🔤 00 ∞ + 🕅 = 🖂 ++ 🖂

LTFDR-SHELTER- "Resource Efficiency" from new methods of bio-production on site

Comparison of resource efficiency in existing DR-shelter approaches

CHARACTERISTICS OF TS-Shelters approach- Resource efficiency (How it adds value to next Phase)

Towards more sustainability

LTF SHELTER

Add value from phase to phase Dependency on external help

Transform into a **better value Less dependant on external** help By resource **manufacture on site**

LTF SHELTER-LIFESPAN-TIME- CHANGE- QUALITY- (Increase Quality to increase Permanency)

Living-Transforming Transform value to better quality for next phase

LTFDR-SHELTER - Comparison to existing approaches to Resource efficiency

3-phased approach

Transitional Add value to next phase

Living-Transforming Transform value to better quality for next phase

Bio-design Categories

DESIGN 00001

DESIGN 00003

DESIGN 01001

DESIGN 01002

DESIGN 01003

DESIGN 02004

DESIGN 01004

DESIGN 02001

DESIGN 02003 DESIGN 02002

(Yao 2017)

EXAMPLES:	bio-utilization	bio assisted	biomimicry
	exa	ample 1: abalone nacre	
well- adapted	sustainable harvest of wild abalone for nacre	natural breeding of abalone for farming	mimicry of nacre self- assembly processes
mal- adapted	over-harvesting of wild abalone for nacre	genetic engineering of abalone to create "better" nacre	producing high-tech ceramics using heat, beat, and treat
	exam	ole 2: spider/silkworm silk	
well- adapted	sustainable harvest of silkworm silk	natural breeding to maximize silk production	mimicry of spider's manufacturing process
mal- adapted	over-harvesting of silkworm silk	bio-engineering goats to produce silk proteins in milk	nylon and kevlar manufacturing

(Baumeister, Tocke et al. 2012)

Biologic, touch sensitive plants

Baloyc.

responsive

lamoshade

PneUI shape changing phon

Engineered Living Materials

Engineered Living Materials

- Rational Genetic Modifications
- Multicellular Hierarchies
- Prescribed Morphologies
- Biopolymer Production

- Cell as a Biofactory
- Extend survivability
- Optimize metabolic performance
- Sense environment dynamically

- Self-healing building materials
- Living fabrics that sense biometrics
- Bioplastics with
- triggered degradation

Engineered Living Materials

Engineered Living Materials

Hub for Biotechnology in the Built Environment Factsheet

LIVING TECHNOLOGY AS AN ASSISTANCE METHOD

Diagram 18 assistance methods

LTFDR-SHELTER (Beyond Sustainable VS Environmental Sustainability)

Natural Environment

Energy and Information flow Share Resources

architecture

Built Environment

(Armstrong, 2010)

TIME - PROCESS

Conventional Multi-phased unsustainable approach without long-term Performance Consideration

 \bigcirc

Transitional Shelter Approach

Living-Transforming Shelter Approach

RESOURCES /COST – CASH DISTRIBUTION AND VALUE

Conventional Multi-phased unsustainable approach without long-term Performance Consideration

Transitional Shelter Approach

Living-Transforming DR Shelter Approach

RESOURCES, MATERIAL DISTRIBUTION

Conventional Multi-phased unsustainable approach without long-term Performance Consideration

Transitional Shelter Approach

Living-Transforming Shelter Approach

To **WHAT** TS characteristic and **HOW** each LTF characteristic can contribute through what **Strategy**

LTF ADAPTABILITY in terms of Insulation against: Rain, Wind, Coldness, Dampness in different climates

Armstrong, R. (2010). Systems Architecture: A New Model for Sustainability and the Built Environment using Nanotechnology, Biotechnology, Information Technology, and Cognitive Science with Living Technology. *Artificial Life, 16*(1), 73-87. Retrieved from GO to ISI>://WOS.ooo272867800005. doi:DOI 10.1162/artl.2009.16.1.16101

Baumeister, D., Tocke, R., Dwyer, J., Ritter, S., & Benyus, J. (2013). Biomimicry resource handbook: A seed bank of knowledge and best practices. In: Missoula, MT, USA: Biomimicry.

Corsellis, T. (2012). Transitional Shelter Guidelines: DFID, IOM, Sida.

Fengler, W., Ihsan, A., & Kaiser, K. (2008). *Managing Post-Disaster Reconstruction Finance—International Experience in Public Financial Management*: The World Bank.

Yao, L. (2017). *Shape changing composite material design for interactions.* Massachusetts Institute of Technology.

Thank You

2)